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Foreword

Oil refining is an industrial chemistry branch that delivers the human society
with fuels which are still the main choice for driving our vehicles: automo-
biles, trucks, airplanes, ships, and trains. The by-products of petroleum refin-
ing provide the petrochemical building blocks materials: plastics, synthetic
fibers, and synthetic elastomers. Petroleum refining business has faced many
challenges lately. They concern low and volatile margins, strict environmental
legislation, and tough product specifications. As a result some refineries could
not survive at these conditions and the number of refineries worldwide has
dropped from 750 down to 643 for the period between 2001 and 2013. At the
same time the global refining capacity has been increased from 83.5 up to
92.0 million barrels per day. The refineries which did not survive were small
in size and they did not have heavy oil conversion units in their processing
schemes. In these difficult for refining industry times featuring with worsen
quality of supplied crude oil and of oil reserves and high differential between
prices of transportation fuels and heavy fuel oil the significance of bottom of
the barrel upgrading processes becomes very high. The trend of decreased de-
mand of heavy oil products additionally supports the leading role of the bot-
tom of the barrel (BOB) upgrading technologies in the refining business. The
application of BOB technologies in the petroleum refining has become a bail
for surviving in this industrial chemistry branch. The proper utilization of
capabilities of BOB refinery units is vital for competitiveness of any refinery.
The single variable that has the biggest impact on refinery BOB conversion
unit performance is the feed quality. A per cent increase of heavy oil conver-
sion is equivalent to several million US $ per year. To select the right feed for
a BOB process one needs to know more about the relationship between re-
sidual feed properties and conversion and product yields. Characterization of
the residual oils plays a very important role in determination of their behavior
in the refinery BOB conversion units. This book summarizes the results of the
investigations on the characterization of heavy oils performed in the Research
laboratory of LUKOIL Neftohim Burgas, and in the Prof. Dr. Assen Zlatarov
University — Burgas for the period 2011-2016. It also deals with the results
obtained in the laboratory and commercial studies of the heavy oil upgrading
processes fluid catalytic cracking, visbreaking and ebullated bed hydrocra-
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cking carried out in the Prof. Dr. Assen Zlatarov University — Burgas and at
the commercial units in LUKOIL Neftohim Burgas refinery for the same
space of time. The book is intended to shed more light on heavy oil char-
acterization by the use of easy accessible methods, which can be available in
refinery, and to relate this information to the heavy oil upgrading process
performance. The book is also devoted to discussing the performance of the
processes fluid catalytic cracking, thermal cracking (visbreaking), and ebul-
lated bed residue hydrocracking in laboratory and commercial conditions.

We would like to acknowledge the valuable work of the PhD students Ra-
doslava Nikolova, and Anife Veli during the preparation of this book. We are
also indebted to our colleagues for all the support they provided.



Preface

The economic development driven by the dramatic population, urbaniza-
tion, and industrial growth recorded in recent years, has increased the de-
mand of world oil supply. Most of this supply is met in the form of light crude
oil. Therefore, the world’s supply of light crude oil is depleting constantly
and consequently, the demand of transportation fuels such as gasoline has
increased [1]. The stock of heavy oil and petroleum residual fractions have
gained significant attention in recent years to bridge the ever increasing
fuel demand-supply gap for petrochemical feeds and transportation fuels
[2]. Moreover, the rapidly rise in transportation fuel prices and increasingly
stringent environmental regulations have diverted attention towards heavy
oil upgrading in order to find cost-effective ways to ensure a constant future
fuel supply. Currently, more than half of the world’s oil reserves (53.3%) are
in the form of restorable oils such as heavy oil, extra heavy oil, oil sand, tar
sands, oil shale, and bitumen [3]. The change in crude oil quality around
the world has impacted the petroleum refining industry in such a way that
current and new refineries are being re-configured and designed respec-
tively to process heavier feedstocks. These feedstocks are characterized by
high amounts of impurities (sulfur, nitrogen, metals, asphaltenes) and low
distillate yields, which make them more difficult to process compared with
light crude oils. Contrarily, the demand of light distillates for producing
of so-called clean fuels (e.g. near zero sulfur gasoline and diesel) is increa-
sing throughout the world. These circumstances situate not only refineries
but also research centers, catalyst manufacturers, and process developers
in a great dilemma which need to adapt, and design future technologies
for proper conversion and upgrading of heavy oils. There are various com-
mercially available technologies to upgrade heavy oils, which are typically
classified in carbon rejection and hydrogen addition processes [4]. They can
be also classified as thermal and thermo-catalytic conversion processes, be-
cause all heavy oil conversion processes take place at elevated temperatures,
with or without the presence of catalyst, and with or without the presence
of hydrogen at higher pressure [5-8]. Despite the progress achieved in the
heavy oil conversion technologies and their commercial application, there
are still gaps in the knowledge about heavy oil characterization and the
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effect of heavy oil properties on the thermal and thermo-catalytic proces-
ses performance, both in laboratory and commercial scale. The aim of this
monograph is to shed some more light about the heavy oil characterization,
performed with the available in the refinery conventional methods and the
effect of heavy oil feedstock quality on yield distribution and product qual-
ity in laboratory and commercial units for thermal and thermo-catalytic
processes.
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